
Tetrahedron Letters 48 (2007) 4683–4685
Total synthesis of aculeatins A and B via a tethered
oxa-Michael approachI
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Abstract—A stereocontrolled total synthesis of aculeatins A and B has been achieved in eight steps and in 15% overall yield. The key
feature of this synthetic approach is the application of a Marouka allylation and tethered intramolecular oxa-Michael reaction to
install the required stereocentres on the tetrahydropyran ring.
� 2007 Elsevier Ltd. All rights reserved.
Spirocyclic natural products continue to fascinate syn-
thetic organic chemists due to their challenging architec-
ture, which has to be installed in a stereo- and
enantioselective manner. Several spirocyclic natural
products have been discovered which possess biological
properties.1 The isolation of aculeatins A 1 and B 2
(Fig. 1) as epimeric spiroacetals2 followed by their race-
mic total synthesis3 happened in quick succession. How-
ever, the only total synthesis of this rare natural product
in optically pure form was reported very recently by
Marco et al. involving asymmetric allylation using chiral
diisocampheyl borane, Wacker oxidation and a boron
aldol as key reactions.4

Our interest is designing strategies towards pyran-con-
taining natural products5 has culminated in a practical
synthesis of both aculeatins A and B in good yields
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(overall yield of about 15%). Retrosynthesis revealed
tetradecanal 6 and the known 4-benzyloxyphenyl acetyl-
ene 5 as starting materials (Scheme 1).

The aldehyde 6 was subjected to an enantioselective
Maruoka allylation6 using titanium complex (S,S)-I
and allyltri-n-butyltin to furnish the homoallylic alcohol
7 in 86% yield with excellent an enantioselectivity of
98% ee (determined by chiral HPLC).7 A one-pot ozono-
lysis, followed by two-carbon homologation8 using eth-
oxycarbonylmethylene triphenylphosphorane produced
the d-hydroxy-a,b-unsaturated ester 8, which is set up
for the tethered intramoleclar oxa-Michael reaction to
install the second stereocentre. As anticipated, treatment
of 8 with benzaldehyde and potassium tert-butoxide at
0 �C in anhydrous THF furnished benzylidene acetal 9
in good yield.9 The diastereoselectivity was greater than
95% favouring the more stable syn-isomer. The conver-
sion of the ester functionality in 9 to Weinreb amide 4
via acid 10 was uneventful. The addition of lithiated 4-
benzyloxyphenyl acetylene10 5 furnished alkynone11 3.
Catalytic hydrogenolysis of the benzylidene, benzyloxy
and acetylene groups gave 11 (not isolated) and further
treatment with phenyliodonium(III) bis(trifluoroace-
tate) (PIFA)12 in acetone–H2O (9:1) yielded a mixture
of aculeatins A and B in a ratio of 5:2, which were sep-
arated by column chromatography. All the compounds
were fully characterized by NMR, mass and IR
spectroscopy13 and the spectral data of 1 and 2 were
in full agreement with those reported in the literature4

(Scheme 2).

In conclusion, a stereodivergent, short, high yielding
synthesis of aculeatins A and B, which should be
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Scheme 2. Reagents and conditions: (a) (S,S)-I (10 mol %), Bu3SnCH2CH@CH2, CH2Cl2, �15 �C to 0 �C, 24 h, 86%; (b) (i) O3, CH2Cl2, �78 �C,
45 min, then PPh3; (ii) Ph3P@CHCO2Et, CH2Cl2, rt, 2 h, 80% (for two steps); (c) PhCHO, t-BuOK, THF, 0 �C, 45 min, 69%; (d) LiOH, THF–H2O
(3:1) 0 �C to rt, 4 h, 91%; (e) NH(Me)(OMe)ÆHCl, DCC, Et3N, DMAP, CH2Cl2, 0 �C to rt, 90%; (f) n-BuLi, 5, THF, �78 �C to �22 �C, 75%; (g) Pd–
C, H2, EtOAc, rt; (h) PhI(OOCCF3)2, Me2CO–H2O (9:1), rt, 10 min, 52 (two steps), 2.5:1 mixture of aculeatins A and B.
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amenable to scale up, has been achieved in an overall
yield of 15%.
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